An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data

نویسندگان

  • Xutao Deng
  • Samia N. Naccache
  • Terry Ng
  • Scot Federman
  • Linlin Li
  • Charles Y. Chiu
  • Eric L. Delwart
چکیده

Next-generation sequencing (NGS) approaches rapidly produce millions to billions of short reads, which allow pathogen detection and discovery in human clinical, animal and environmental samples. A major limitation of sequence homology-based identification for highly divergent microorganisms is the short length of reads generated by most highly parallel sequencing technologies. Short reads require a high level of sequence similarities to annotated genes to confidently predict gene function or homology. Such recognition of highly divergent homologues can be improved by reference-free (de novo) assembly of short overlapping sequence reads into larger contigs. We describe an ensemble strategy that integrates the sequential use of various de Bruijn graph and overlap-layout-consensus assemblers with a novel partitioned sub-assembly approach. We also proposed new quality metrics that are suitable for evaluating metagenome de novo assembly. We demonstrate that this new ensemble strategy tested using in silico spike-in, clinical and environmental NGS datasets achieved significantly better contigs than current approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Meta-IDBA: a de Novo assembler for metagenomic data

MOTIVATION Next-generation sequencing techniques allow us to generate reads from a microbial environment in order to analyze the microbial community. However, assembling of a set of mixed reads from different species to form contigs is a bottleneck of metagenomic research. Although there are many assemblers for assembling reads from a single genome, there are no assemblers for assembling reads ...

متن کامل

A Scalable and Accurate Targeted Gene Assembly Tool (SAT-Assembler) for Next-Generation Sequencing Data

Gene assembly, which recovers gene segments from short reads, is an important step in functional analysis of next-generation sequencing data. Lacking quality reference genomes, de novo assembly is commonly used for RNA-Seq data of non-model organisms and metagenomic data. However, heterogeneous sequence coverage caused by heterogeneous expression or species abundance, similarity between isoform...

متن کامل

IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth

MOTIVATION Next-generation sequencing allows us to sequence reads from a microbial environment using single-cell sequencing or metagenomic sequencing technologies. However, both technologies suffer from the problem that sequencing depth of different regions of a genome or genomes from different species are highly uneven. Most existing genome assemblers usually have an assumption that sequencing...

متن کامل

Reference-guided Assembly of Metagenomic Sequences

Metagenomic studies have primarily relied on de novo approaches for reconstructing genes and genomes from microbial mixtures. While database driven approaches have been employed in certain analyses, they have not been used in the assembly of metagenomic data. This is in part due to the small size and biased coverage of public genome databases, but also due to the inherent computational cost of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015